236 research outputs found

    Modulation of GABA-A receptor function and sleep

    Get PDF
    The intravenous general anaesthetics (propofol & etomidate), the barbiturates, steroids (e.g. alphaxalone, allopregnanalone), the benzodiazepines and the widely prescribed ‘sleeping pill’, the imidazopyridine zolpidem, are all positive allosteric modulators (PAMs) of GABAA receptors. PAMs enhance ongoing GABAergic communication between neurons. For treating primary insomnia, zolpidem remains a gold-standard medication — it reduces the latency to NREM sleep with a rapid onset and short half-life, leading to relatively few hangover effects. In this review, we discuss the role of the different GABAA receptor subtypes in the action of sleep-promoting drugs. Certain neuronal hub areas exert disproportionate effects on the brain's vigilance states. For example, injecting GABAA agonists and PAMs into the mesopontine tegmental anaesthesia area (MPTA) induces an anaesthetic-like state. Similarly, by selectively increasing the GABA drive onto arousal-promoting nuclei, such as the histaminergic neurons in the tuberomammillary nucleus, a more natural NREM-like sleep emerges. Some patients suffering from idiopathic hypersomnia have an unidentified GABAA receptor PAM in their cerebral spinal fluid. Treating these patients with benzodiazepine PAM site antagonists improves their symptoms. More knowledge of endogenous GABAA receptor PAMs could provide insight into sleep physiology

    Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons

    Get PDF
    Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep

    Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels.

    Get PDF
    In this study, we explored the possibility that two-pore domain potassium (K(2P)) channels are sufficient to support action potential (AP) generation in the absence of conventional voltage-gated potassium (K(V)) channels. Hodgkin–Huxley parameters were used to mimic the presence of voltage-gated sodium (Na(V)) channels in HEK-293 cells. Recombinant expression of either TREK-1 or TASK-3 channels was then used to generate a hyperpolarised resting membrane potential (RMP) leading to the characteristic non-linear current–voltage relationship expected of a K(2P)-mediated conductance. During conductance simulation experiments, both TASK-3 and TREK-1 channels were able to repolarise the membrane once AP threshold was reached, and at physiologically relevant current densities, this K(2P)-mediated conductance supported sustained AP firing. Moreover, the magnitude of the conductance correlated with the speed of the AP rise in a manner predicted from our computational studies. We discuss the physiological impact of axonal K(2P) channels and speculate on the possible clinical relevance of K(2P) channel modulation when considering the actions of general and local anaesthetics

    Recruitment Strategies and Colony Size in Ants

    Get PDF
    Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony's organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology

    A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II

    Get PDF
    During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning

    Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of β1 immunoglobulin binding domain of protein G (GB1)

    Get PDF
    Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for proteins not amenable to other methods. However, few automated analysis tools are currently available for MAS SSNMR. We present a methodology for automating protein resonance assignments of MAS SSNMR spectral data and its application to experimental peak lists of the β1 immunoglobulin binding domain of protein G (GB1) derived from a uniformly 13C- and 15N-labeled sample. This application to the 56 amino acid GB1 produced an overall 84.1% assignment of the N, CO, CA, and CB resonances with no errors using peak lists from NCACX 3D, CANcoCA 3D, and CANCOCX 4D experiments. This proof of concept demonstrates the tractability of this problem

    Computer simulation of leadership, consensus decision making and collective behaviour in humans

    Get PDF
    The aim of this study is to evaluate the reliability of a crowd simulation model developed by the authors by reproducing Dyer et al.’s experiments(published in Philosophical Transactions in 2009) on human leadership and consensus decision-­making in a computer-­based environment. The theoretical crowd model of the simulation environment is presented, and its results are compared and analysed against Dyer et al.’s original experiments. It is concluded that the results are 11 largely consistent with the experiments, which demonstrates the reliability of the crowd model. Furthermore, the simulation data also reveals several additional new findings, namely: 1) the phenomena of sacrificing accuracy to reach a quicker consensus decision found in ants colonies was also discovered in the simulation; 2) the ability of reaching consensus in groups has a direct impact on the time and accuracy of arriving at the target position; 3) the positions of the informed individuals or leaders in the crowd could have significant impact on the overall crowd movement; 4) the simulation also confirmed Dyer et al.’s anecdotal evidence of the proportion of the leadership in large crowds and its effect on crowd movement. The potential applications of these findings are highlighted in the final discussion of this paper

    Association between physical activity and metabolic syndrome in middle-aged Japanese: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although many studies have reported an association between self-reported physical activity and metabolic syndrome (MetS), there is limited information on the optimal level of physical activity required to prevent MetS. This study aimed to determine the association between objectively measured physical activity and MetS in middle-aged Japanese individuals. We also determined the optimal cutoff value for physical activity required to decrease the risk of developing MetS.</p> <p>Methods</p> <p>A total of 179 men and 304 women, aged between 30 and 64 years, participated in this study. Participants were divided into two groups using the Japanese criteria for MetS as those with MetS or pre-MetS, and those without MetS. Participants were considered to be physically active if they achieved a physical activity level of 23 metabolic equivalents (METs) h/week, measured using a triaxial accelerometer. The association between physical activity and MetS was analyzed using logistic regression with the following covariates: sex, age, sedentary time, low intensity activity, calorie intake, smoking, menopause and body mass index. We also evaluated the factors that determined the association between the prevalence of MetS and pre-MetS and the physical activity cutoff value using classification and regression tree (CART) analysis.</p> <p>Results</p> <p>The odds ratio for MetS and pre-MetS was 2.20 for physically inactive participants (< 23 METs h/week), compared with physically active participants (≥ 23 METs h/week). The corresponding odds ratios for men and women were 2.27 (<it>P </it>< 0.01) and 1.95 (not significant), respectively. CART analyses revealed that moderate-vigorous physical activity of > 26.5 METs h/week was sufficient to decrease the prevalence of MetS and pre-MetS in middle-aged Japanese men and women.</p> <p>Conclusions</p> <p>The results of this cross-sectional study indicate that the Exercise and Physical Activity Reference for Health Promotion 2006 is inversely associated with the prevalence of MetS in men. Our results also suggest that moderate physical activity of > 26.5 METs h/week may decrease the risk of developing MetS and pre-MetS in middle-aged Japanese individuals.</p
    corecore